Non-linearly elastic creasing

Introduction

Creasing as a bifurcation phenomenon has long been enigmatic. By definition, creases are a localisation of material *self contact* on the free surface of compressed elastic solids. The bifurcation condition for crease initiation can be sought by matching an "outer" uni-axially compressed state, an "inner" infinitesimal creased solution and an "intermediate" field of incremental displacement through a conservation law of energy and momentum.

The "outer" solution

We consider an incompressible, isotropic, hyper-elastic half space in *plane-strain* uni-axial compression. The reference and finitely deformed material configurations are denoted \mathcal{B}_0 and \mathcal{B}_e respectively.

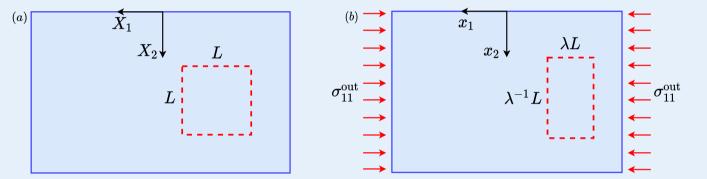


Figure 1: (a) The reference configuration \mathcal{B}_0 . (b) The compressed configuration \mathcal{B}_e .

The mapping $\mathcal{B}_0 \to \mathcal{B}_e$ is enforced by a change of variables $x_1 = \lambda X_1$, $x_2 = \lambda^{-1} X_2$ and the *deformation gradient* is

$$ar{\mathbf{F}} = rac{\partial \mathbf{x}}{\partial \mathbf{X}} = \lambda \, \mathbf{e}_1 \otimes \mathbf{E}_1 + \lambda^{-1} \, \mathbf{e}_2 \otimes \mathbf{E}_2,$$
 (1

where λ is the principle stretch. The Cauchy stress tensor is defined as $\sigma = 2 \, \bar{W}'(I_1) \, \bar{\mathbf{F}} \bar{\mathbf{F}}^\top - p \mathbf{I}$, where p is the kinematic pressure, W is the strain-energy function and $I_1 = tr(\mathbf{FF}^+)$. With use of (1) and the boundary condition $\sigma_{22}|_{x_2=0} = 0$, σ is found to have a single non-zero component

$$\sigma_{11}^{\mathsf{out}} = 2\bar{W}'(I_1)\left(\lambda^2 - \lambda^{-2}\right).$$
(2)

Thus, (2) gives the horizontal compressive stress enforcing the "outer" solution.

References

- [1] Ciarletta, P., & Truskinovsky, L. (2019). Soft nucleation of an elastic crease. *Physical review letters*, 122(24), 248001.
- [2] Noether, E. (1971). Invariant variation problems. *Transport* Theory and Statistical Physics, 1(3), 186-207.

 $|\mathcal{B}_e^{\star}|$

Incremental displacement field

$\mathbf{u} =$

 $x_1 = 0.$

Dominic Emery Supervisor: Prof. Yibin Fu

The "inner" solution

At a critical compression λ_{cr} , an *infinitesimal* crease forms on the materials free surface. This "inner" deformation is a canonical mapping from the half space \mathcal{B}_0^{\star} to the whole space

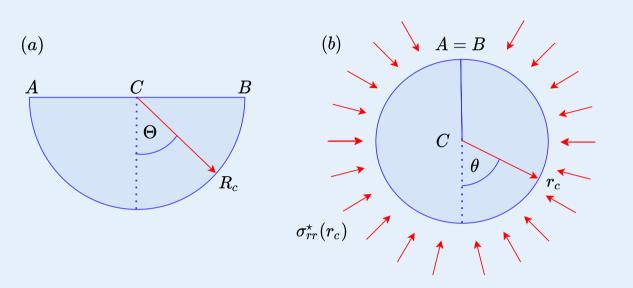


Figure 2: (a) The reference configuration \mathcal{B}_0^{\star} . (b) The finitely deformed configuration \mathcal{B}_e^{\star} .

enforced by the change in cylindrical co-ordinates $r = R/\sqrt{2}$, $\theta = 2\Theta$. The deformation gradient is then

$$\bar{\mathbf{F}}^{\star} = \frac{1}{\sqrt{2}} \mathbf{e}_r \otimes \mathbf{E}_r + \sqrt{2} \mathbf{e}_{\theta} \otimes \mathbf{E}_{\Theta}.$$
 (3)

Given self-contact length $r_c \ll 1$ and traction continuity across $\theta = \pm \pi$, we assume the equilibrium condition $\sigma_{11}^{\mathsf{out}} = \sigma_{rr}(r_c)$. Thus, the pressure distribution in \mathcal{B}_{e}^{\star} is:

$$p_{\rm in}(r) = \bar{W}'\left(\frac{5}{2}\right) - 3\bar{W}'\left(\frac{5}{2}\right)\ln\left(\frac{r}{r_c}\right) - \sigma_{11}^{\rm out}.$$
 (4)

The crease formation imposes an incremental displacement field \mathbf{u} onto \mathcal{B}_e which decays to the uniform compression for $|\mathbf{x}| \gg 1$. Given its *localised* nature, the crease is analogous to a vertical point force whose magnitude $\delta f = -2r_c \sigma_{11}^{out}$ is the resultant along the boundary of the inner solution. By superposing this singular load onto \mathcal{B}_e , we find that

$$= (-\phi_{,2}, \phi_{,1}), \quad \phi = \tilde{a} G (\tilde{x}_1, \tilde{x}_2) + \bar{a} G (\bar{x}_1, \bar{x}_2), \quad (\mathbf{5})$$

is a scaled *biharmonic* solution to the incremental problem, where ϕ is a stream function introduced to satisfy the incompressibility constraint $u_{i,i} = 0$. The constants \tilde{a} and \bar{a} are deduced from traction-free boundary conditions and the Green's function $G(x, y) = x \ln (x^2 + y^2) + 2y \arctan (x/y)$ provides the desired singular behaviour and symmetry about

Bifurcation condition

The bifurcation condition for creasing gives the critical threshold for the coexistence of the 3 solutions, and is sought by minimising $\mathcal{E} = \int_{\mathcal{B}_0} \overline{W}(\mathbf{F}) d\mathbf{X}$. Under spatial translation in x, $\delta \mathcal{E} = 0$ due to homogeneity of the "outer" solution. By Noether's Theorem [2], this symmetry gives rise to the conservation law of energy and momentum:

$$\nabla \cdot \Sigma$$

where $\Sigma = \overline{W}\mathbf{I} - \mathbf{F}^{-1}\sigma\mathbf{F}$ is the Energy-Momentum tensor and **n** is the outward normal to the closed contour η .

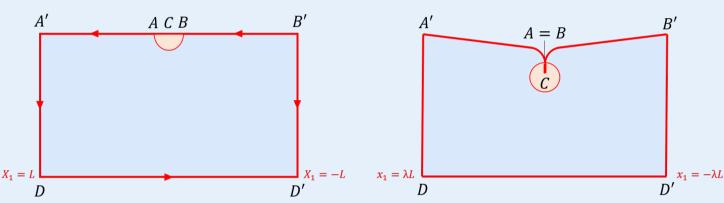


Figure 3: The contour η (red boundary) enclosing the "inner" and "incremental" regions. $\mathcal J$ must be globally zero along the entirety of η .

 $R_{c}\left(W\left(5\right)\right)$

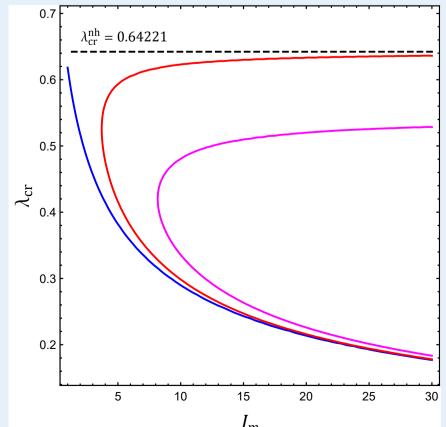
Results

The Gent strain-energy function:

W(

incorporates material strain stiffening via the constant J_m .

Figure 4: The variation of critical stretches λ_{cr} against J_m for wrinkling (pink), creasing (red) and rigidity (blue). Creases are absent for $J_m < 3.186$. In the limit $J_m \to \infty$, the neo-Hookean model $\overline{W}(I_1) = \frac{1}{2}\mu(I_1 - 2)$ is recovered, and $\lambda_{cr} = 0.64221$.



$$= 0 \implies \mathcal{J} \equiv \int_{\eta} \Sigma \mathbf{n} \, dS = \mathbf{0} \tag{6}$$

From (6), the following bifurcation condition for creasing in terms of a general strain-energy function is obtained

$$(\delta/2) - \sigma_{11}^{\mathsf{out}} + \lambda^{-1} \sigma_{11}^{\mathsf{out}} \phi_{,2}|_{x_2=0} = 0.$$

$$(f_1) = -\frac{\mu J_m}{2} \ln \left(1 - \frac{I_1 - 2}{J_m} \right),$$
 (7)

